FUN3D v12.7 Training

Session 12:
Dynamic-Grid Simulations

Bob Biedron

FUNS3D Training Workshop
http://fun3d.larc.nasa.gov June 20-21, 2015 N.?Emmw 1

Session Scope

I What this will cover
—!I' How to set up and run time-accurate simulations on dynamic meshes
*INondimensionalization
*!Choosing the time step
*!Body / Mesh motion options
*!Input / Output
«!What will not be covered
-1 Specifics for overset and aeroelastic: covered in follow-on sessions
*!What should you already be familiar with
—! Basic steady-state solver operation and control
—! Basic flow visualization

FUNS3D Training Workshop
http://fun3d.larc.nasa.gov June 20-21, 2015 N.?Emmw 2

FUN3D Training Workshop

6/9/15

6/9/15

Introduction

«IBackground
—!I Many of problems of interest involve involve moving or deforming

geometries
—! Governing equations written in Arbitrary Lagrangian-Eulerian

(ALE) form to account for grid speed
—! Nondimensionalization often more involved/confusing/critical

*ICompatibility
—! Fully compatible for compressible/incompressible flows; mixed

elements; 2D/3D
—I' Not compatible with generic gas model
«|Status
—I Compressible path with moving grids is exercised routinely;
incompressible path much less so
—! 6-DOF option has had very limited testing / usage

FUN3D Training Workshop @NSD 3
i

@ http://fun3d.larc.nasa.gov June 20-21, 2015

Governing Equations

*! Arbitrary Lagrangian-Eulerian (ALE) Formulation
: _§,gav

a(QV)=—ggav(?—fij)'ﬁdS‘fﬁvi";dS=1; 0= v

ot
W = Arbitrary control surface velocity; Lagrangian if W =(u,v,w)"

(moves with fluid); Eulerian if W =0 (fixed in space)

«I Discretize using Nt order backward differences in time, linearize R
about time level n+1, and introduce a pseudo-time term:

DN+

n+l
AnHm — BnHm ¢n+1 An+m - An)
R - = QM- Q") - + R

AQ™ " =
- Rn+l,m + O(AIN)

At At

*!Physical time-level t" ; Pseudo-time level "

«!Need to drive subiteration residual R™" —0 using pseudo-time
subiterations at each time step — more later — otherwise you have

N .
more error than the expected O(At") truncation error
FUNS3D Training Workshop @NSD 4

@ http://fun3d.larc.nasa.gov June 20-21, 2015

n+l n+l — pN+,m
LASVA R T
aQ

FUN3D Training Workshop

6/9/15

Mesh / Body Motion (1/2)

*!Motion is triggered either by setting moving grid = .true. in
&global (fun3d.nml), or by the command line --moving grid

I All dynamic-mesh simulations require some input data via an auxiliary
namelist file: moving body.input

*lA body is defined as a user-specified collection of solid boundaries in grid
«!Body motion options:

—! Several built-in functions for rigid-body motion: translation and/or
rotation with either constant velocity or periodic displacement!

—I'Read a series of surface files — body can be either rigid or deforming
—! Read a series of 4x4 transform matrices - rigid body
—!' 6 DOF via UAB/Kestrel library “libmo”

*ILimited distribution

*IRequires configuring with --with-sixdof=/path/to/6DOF

—! Application-specific: mode-shape based aeroelasticity (linear
structures); rotorcraft nonlinear beam

FUNSD Training Worksho
@/ hitp:/fun3d Jarc.nasa gov June 2024, 2015 @N.?Emmw °

Mesh / Body Motion (2/4)

*IChose a mesh-motion option than can accommodate the desired
body-motion option

*IMesh motion options:
—!'Rigid - maximum 1 body containing all solid surfaces (unless overset)

—! Deforming — allows multiple bodies without overset; can be limited to
relatively small displacements before mesh cells collapse

—! Combine rigid and/or deforming with overset for large displacements /
multiple bodies

*!Rigid mesh motion performed by application of 4x4 transform matrix to all

points in the mesh - fast; positivity of cell volumes guaranteed to be

maintained

—I Complex transforms can be built up from simple ones: matrix multiply

—! Allows parent-child motion (child follows parent but can have its own
motion on top of that)

FUNS3D Training Workshop
http://fun3d.larc.nasa.gov June 20-21, 2015 N.?Emm&_‘ 6

FUN3D Training Workshop 3

6/9/15

Mesh / Body Motion (3/4)

*!Mesh deformation handled via solution of a linear elasticity PDE:
V- [uw(Vu+ VuT) +AV-wl]l=f=0
Ev E
A=mr— —— =
(1+v)(1-2v) 2(1+v)

-1 " (Poisson’s ratio) is fixed; E (Young’s modulus) is selectable as:

11 /slen --elasticity 1 (default)
*!1/volume --elasticity 2 (rarely used anymore)
11 /slen**2 --elasticity 5 (last ditch for difficult problems)

+|Elasticity solved via GMRES method; CPU intensive - can be 30% or more
of the flow solve time; check convergence (screen output)

I Fairly robust, but can generate negative cell volumes; code stops
*I“untangling” step attempted if neg. volumes generated — tet meshes only

FUNS3D Training Workshop
http://fun3d.larc.nasa.gov June 20-21, 2015 N.?Emmw 7

Mesh / Body Motion (4/4)

! GMRES solver used for mesh deformation has default parameter
settings which can be adjusted in the namelist selasticity gmres (in
the fun3d.nml file):

ileft nsearch nrestarts tol
1 +50 10 l.e-06

—!I'You generally won’t have to adjust these values

—! Exception: “structured” grids with very tight wake spacing can be very
hard to deform and you may need to set tol very small, e.g. 1.e-12
(and will need more restarts); usually not an issue with typical grids

—!If negative volumes are generated and not successfully untangled, try
reducing tol, which in turn may require a larger value of nrestarts

FUNS3D Training Workshop
http://fun3d.larc.nasa.gov June 20-21, 2015 N.?Emmw 8

FUN3D Training Workshop 4

6/9/15

Nondimensionalization of Motion Data (1/2)

«IRecall: * indicates a dimensional variable, otherwise nondimensional

I Typical motion data we need to nondimensionalize: translational velocity,
translational displacement, angular velocity, and oscillation frequency

I Angular or translational displacements / velocities are input into FUN3D
as magnitude and direction

IDisplacement input: angular in degrees; translational ! x=1 X% I(Ly/Ly)
! Translational velocity is nondimensionalized just like flow velocity:

—!I'U* = translation speed of the vehicle (e.g. ft/s)

—lU =U*/a*, (comp.; thisis a Mach No.) U =U*/U*(incomp)
*IRotation rate:!

-1Q" = body rotation rate (e.g. rad/s)

Q= Q (Ll / a% (cOmp) Q=Q (L*flye) / Ut (incomp)

—! Other variants on specified rotation rate are possible, e.g. rotor tip
speed, from which Q"= U*;, / R*

FUNS3D Training Workshop
http://fun3d.larc.nasa.gov June 20-21, 2015 N.?Emm&_‘ 9

Nondimensionalization of Motion Data (2/2)

!Oscillation frequency of the physical problem can be specified in different
forms

—If*=frequency (e.g. Hz)
—! " ” = circular frequency (rad/s)
g g
—1k =reduced frequency, k= % L* "/ U* (be careful of exact
definition - sometimes a factor of 2 is not used)

«I Built-in sinusoidal oscillation in FUN3D is defined as sin(2 “ ft+") where
the nondimensional frequency f and phase lag " are user-specfied

+1So the corresponding nondimensional frequency for FUN3D is
=% (L* e/ Lier) / @% e (cOmp) f=F* (L* o/ Lieg)/ U* ¢ (incomp)

—If= G)* (L*ref/ Lref) / (2 N a*ref) f= (U* (L*ref/ Lref) / (2 N U*ref)
—1f=k M*ref/ (7 Lref) f=k/ (Lref)
@ http://fun3d.larc.nasa.gov N iawlrg‘&i;?v gg{?hop @N.?Emm&m 10

FUN3D Training Workshop 5

6/9/15

Overview of moving body.input

*lA body is defined as a collection of solid boundaries in the grid

! The specifics of body / mesh motion are set in one or more namelists that
are put in a file called moving_body . input - this file must be provided
when moving grid is triggered (as a CLO or &global entry)

—! The &body_definitions namelist defines one or more bodies that
move and is always needed in a dynamic-grid simulation

—! The &forced_motion namelist provides a limited means of defining
basic translations and rotations as functions of time

—! The smotion_from_ file namelist defines the motion of a rigid body
from a sequence of 4x4 transform matrices

—! The &surface_motion_from file namelist defines the motion of
a rigid or deforming body from a time sequence of boundary surfaces

—! The sobserver_motion namelist provides a means of generating
boundary animation output from a non-stationary reference frame

*lgbody_definitions is required with moving grid, others optional

FUNSD Training Worksho
@/ hitp:/fun3d Jarc.nasa gov June 2024, 2015 @N.?Emmw o

Overview of sbody definitions Namelist

*10Only most-used items shown here — see manual for complete list

*!The &body_definitions namelist defines the bodies that move
(defaults shown; most need changing)

&body definitions ! below, b=body i=boundary
n_moving bodies = 0 ! how many bodies in motion
body_ name (b) = ‘' ! must set unique name for each

parent name (b) ARA

child inherits motion of parent

n_defining boundary(b)= 0 ! how many boundaries define body

defining boundary(i,b)= 0 ! list of boundaries defining body

motion_driver (b) = ‘none’ ! mechanism driving body motion

mesh_movement (b) = ‘static’ ! specifies how mesh will move
/

ICaution : boundary numbers must reflect any lumping applied at run time!
*!All variables above except n_moving bodies are set for each body
!The blank string(’) for parent_name => inertial frame

FUNSD Training Worksho
@/ hitp:/fun3d Jarc.nasa gov June 2021, 2015 @N.?Emmw 2

FUN3D Training Workshop 6

6/9/15

Overview of sbody definitions (cont.)

*!Options for motion_driver (default: *‘none’)

—! “forced’

«! Built-in forcing functions for rigid-body motion, const. or periodic
—! ‘surface file’

*IFile with surface meshes at selected times; interpolates in between
—! ‘motion_file’

*IFile with 4x4 transforms at selected times; “interpolates” in between
—! Y6dof’

*Irelies on calls to “libmo” functions
—! ‘aeroelastic’

*Imodal aeroelastics

—I All the above require additional namelists to specify details; next slide
outlines namelist required when motion_driver=‘forced’

+!Options for mesh_movment (default: *static’)
—! ‘rigid’, ‘deform’, ‘rigid+deform’

FUNSD Training Worksho
@/ hitp:/fun3d Jarc.nasa gov June 2024, 2015 @N.?Emmw 8

Overview of &forced motion Namelist

*!Use &forced motion namelist to specify a limited set of built-in motions

&forced motion ! below, index b=body#
rotate (b) ! how to rotate this body: 0 don’t (default);

! 1 constant rotation rate; 2 sinusoidal in time
rotation_rate(b) ! body rotation rate; used only if rotate =1
rotation_freq(b) ! frequency of oscillation; use only if rotate = 2
rotation_amplitude(b) ! oscillation amp. (degrees); only if rotate=2
rotation_vector x(b) ! x-comp. of unit vector along rotation axis
rotation_vector_y(b) !
rotation_vector_z(b) !
rotation_origin x(b) !
rotation_origin_y(b) !
rotation_origin_z(b) !

/
I There are analogous inputs for translation (translation_rate, etc.)

*ISee manual for complete list

y-comp. of unit vector along rotation axis
z-comp. of unit vector along rotation axis
x-coord. of rotation center (to fix axis)
y-coord. of rotation center

z-coord. of rotation center

*INote: FUN3D’s sinusoidal oscillation function (translation or rotation) has
27 builtin, e.gsin(2 ” rotation_freq t)

FUNSD Training Worksho
@ hitpifun3d lrc.nasa gov Jone 2095 20150 @rﬂ:mm& 14

FUN3D Training Workshop 7

6/9/15

Output Files

«lIn addition to the usual output files, for forced / 6-DOF motion there are 3
ASCII Tecplot files for each body

—! PositionBody_ N.dat tracks linear (x,y,z) and angular (yaw, pitch,
roll) displacement of the “CG” (rotation center)

—! VelocityBody N.dat tracks linear (V,,V,,V,) and angular
(Q,,Q ,Q)) velocity of the “CG” (rotation center)

—! AeroForceMomentBody_ N.dat tracks force components (F,,F,, F,)
and moment components (MX,My,MX)

—! Data in all files are nondimensional by default (e.g. “forces” are
actually force coefficients); moving _body.input file has option to
supply dimensional reference values such that this data is output in
dimensional form - see manual/website for details

—! Forces are by default given in the inertial reference system;
moving body.input file has option to output forces in the body-
fixed system - see manual/website for details

FUNSD Training Worksho
@/ hitp:/fun3d Jarc.nasa gov June 2024, 2015 @N.?Emmw 5

Tutorial Case: Pitching Airfoil (1/8)

I Test case located in: tutorials/flow_unsteady_airfoil_pitching

-!run_tutorial. sh script starts with a 600 time step restart file, runs
an additional 100 steps, and makes plots that follow

!Consider one of the well known AGARD pitching airfoil experiments,
“Case 1”

—! Re, = 4.8 million, M= 0.6, chord=c*=0.1m, chord-in-grid =1.0

—! Reduced freq. k =2 " f*/ (U*+/ 0.5c*) = 0.0808, (f*=50.32 Hz)

—! Angle of attack variation (exp): @ =2.89 + 2.41sin(2af t') (deg)
1Setting the FUN3D data:

—langle of attack = 2.89 rotation amplitude = 2.41

—I'Recall f=k M*;/ ~ from the 2" nondimensionalization slide

—! rotation_freq=1f=0.0808 (0.6)/3.14... = 0.01543166

—!' So in this case we actually didn’t have to use any dimensional data
since the exp. frequency was given as a reduced (non dim.) frequency

FUNSD Training Worksho
@/ hitp:/fun3d Jarc.nasa gov June 2021, 2015 @N.?Emmw 16

FUN3D Training Workshop 8

6/9/15

Tutorial Case: Pitching Airfoil (2/8)

+1Setting the FUN3D data (cont):
—I Time step: the motion has gone through one cycle of motion when
t =T, so that

sin(2 ” rotation_freqT)=sin(2")
T=1/rotation_freq (thisisourt,)
for N steps / cycle, T=NAt so
At=T/N=(1/rotation_freq)/N

—I Take 100 steps to resolve this frequency:
At=(1/0.01543166) / 100 = 0.64801842

—! Alternatively, could use t, = (1/f*) @*¢ (L ofL*er), With f* = 50.32 Hz,

and assume value for a*

chr

inf

FUN3D Training Worksho
@ http://fun3d.larc.nasa.gov June 20-2?, 2015 . @N,.,?Emmw 17

Tutorial Case: Pitching Airfoil (3/8)

C's
8662 Y=Const. Symmetry Planes (2)
4000 Viscous Surface

\\\\\ 5000 Farfield Riemann (3)

Y
N\
sl
-‘

FUN3D Training Worksho
@ http://fun3d.larc.nasa.gov June 20-2?, 2015 . @N,.,?Emmw 18

FUN3D Training Workshop 9

*IRelevant fun3d.nml data

/
*/Relevant moving grid.input data

&body_definitions

&global
moving_grid = .true.

/

&nonlinear solver parameters
temporal_err_control = .true.
temporal err floor = 0.1
time_ accuracy = "2ndorderOPT”
time_step nondim = 0.64801842
subiterations = 30
schedule cfl = 50.00 50.00
schedule_cflturb = 30.00 30.00

Tutorial Case: Pitching Airfoil (4/8)

Turn on

Exit 1 order below estimate
Our Workhorse Scheme

100 steps/pitch cycle

! constant cfl each step

n_moving_bodies = 1, ! number of bodies
body_name (1) = 'airfoil', ! name must be in quotes
n_defining bndry(l) = 1, ! one boundary defines the airfoil
defining bndry(1,1) = 5, ! (boundary, body)
motion_driver (1) = 'forced’
mesh_movement (1) = 'rigid’,
@ /hltp://funSd,Iarc.nasa.gov FUN?EHEEBW_I;?V Vz\/élwr EShOp @N.?Emmw 19

Tutorial Case: Pitching Airfoil (5/8)
*! Relevant moving grid.input data (cont)
&forced motion
rotate (1) = 2, ! type: sinusoidal
rotation_freq(l) = 0.01543166, ! reduced rotation frequency
rotation_amplitude(1l) = 2.41, ! pitching amplitude
rotation_origin x(1) = 0.25, ! x-coordinate of rotation origin
rotation_origin_y(1) = 0.0, ! y-coordinate of rotation origin
rotation_origin_z (1) = 0.0, ! z-coordinate of rotation origin
rotation_vector_x(1) = 0.0, ! unit vector x-component along
! rotation axis
rotation_vector_y (1) = 1.0, ! unit vector y-component along
! rotation axis
rotation_vector_z(l) = 0.0, ! unit vector z-component along
! rotation axis
/
@ hitp://fun3d.arc.nasa.gov FUN?&EEH;?vzv&résmp @"fﬂfmm& 20

FUN3D Training Workshop

6/9/15

10

Tutorial Case: Pitching Airfoil (6/8)

Time History
(time_history.lay)
1.2 — — — — 0.02
- 0.01
] 2
- 0 o
- -0.01
I Example)
s Starts Here 1
L L1 N IR BRI N —J _0.02
0 100 200 300 400 500
Simulation_Time
FUNS3D Training Worksh
@ hitp:#un3d arc.nasa. gov Jone 2095 2015 " @rﬂ:mm& 21

Tutorial Case: Pitching Airfoil (6/8)

Subiteration Residuals, Final 10 Steps Subiteration Lift & PM, Final 10 Steps

(mean flow just misses tolerance)

(subit_history.lay) (subit_force_history.lay)
10° ‘,H‘,H‘,H‘,‘H%m' 0,4H‘.H‘.‘H.‘H.H‘."o
10]
-0.002
10°
0.004

1% 184 g

A 0.006
10"5
100k : 1 0.008

3 Dashed Lines Indicate H10°

Approx. Temporal Error Estimates|

9 L 1 | TS -6 TR [T SR U NN T AR SN S SN N S)

10670 672 674 676 678 6830 %90 GEI)Z 6534 6;96 6538 7(|)0 -0.01
Fractional_Time_Step Fractional_Time_Step
FUNS3D Training Worksh
@ http://fun3d.larc.nasa.gov Jumergg_lgwgv 281"55 op @N.?Emm& 22

FUN3D Training Workshop

6/9/15

11

@/ http://fun3d.larc.nasa.gov

Tutorial Case: Pitching Airfoil (7/8)

Mach Number

(mach_animation.lay)

Pressure Coefficient
(cp_animation.lay)

FUNS3D Training Workshop @

June 20-21, 2015 N3D. 23

ol st e St

Tutorial Case: Pitching Airfoil (8/8)

Comparison with Landon, AGARD-R-702, Test Data,1982
Note: comparison typical of other published CFD results
These plots not generated as part of the tutorial

@/ http://fun3d.larc.nasa.gov

Lift vs. Alpha Pitching Moment vs. Alpha

0.8 —_— 0.04 ————————————————
) Experiment i o Experiment]
Rigid Mesh, 100 Steps/Cycle [Rigid Mesh, 100 Steps/Cycle]
| = = - - Deforming Mesh, 100 Steps/Cycle | - = = - Deforming Mesh, 100 Steps/Cycle 1
B 0.03 -
06| b []
0.02 - —
- £ I]
Q 04 - [(8) L i
0.01 - —
02} < []
| of g

o— ; L ,|1 — oo b ; M };
a, deg a, deg

Rigid mesh and deforming mesh produce nearly identical results

N3D 24

ol st e St

FUN3D Training Workshop @
June 20-21, 2015

FUN3D Training Workshop

6/9/15

12

6/9/15

Troubleshooting Body / Grid Motion

*!When first setting up a dynamic mesh problem, suggest using either the
following in the &global namelist
—!body motion_only = .true.
—-!grid motion_only = .true.

IBoth options turn off the flow solution for faster processing (memory
footprint is the same however)

—!body motion_only especially useful for 15t check of a deforming
mesh case since the elasticity solver is also bypassed

—lgrid motion_only performs all mesh motion, including elasticity
solution — in a deforming case this can tell you up front if negative
volumes will be encountered

—I Caveat: can’t really do this for aeroelastic or 6DOF cases since motion
and flow solution are coupled

!Use these with some form of animation output: only solid boundary output
is appropriate for body _motion_only; with grid motion_only can
look at any boundary, or use sampling to look at interior planes, etc.

FUNSD Training Worksho
@/ hitp:/fun3d Jarc.nasa gov June 2024, 2015 @N.?Emmw 25

List of Key Input/Output Files

*|Beyond basics like fun3d.nml, etc.:
—! Setmoving_grid = .true. in &global namelist
!Input
—! moving body.input (else code stops when moving_grid = T)
*!Qutput
—! [project]_subhist.dat
—! PositionBody N.dat (forced motion / 6-DOF only)
—!VelocityBody N.dat (forced motion / 6-DOF only)
—! AeroForceMomentBody_ N.dat (forced motion / 6-DOF only)

FUNSD Training Worksho
@/ hitp:/fun3d Jarc.nasa gov June 2021, 2015 @N.?Emmw 26

FUN3D Training Workshop 13

